3. Post-training Code LMs:
Supervised Fine-Tuning

Post-training: Recipe for SFT

> Instruction Data

O Objective: Steer LLMs toward targeted behaviors (instruction following, reasoning).

Q Approach: Leverage instruction synthesis, structured response generation, and
systematic quality evaluation.

> Training Curriculum

O Data Selection: Data mixing and scaling.

O Training Strategy: Iterative and multi-stage SFT, heavy/lightweight SFT.

Recipe for SFT: Instruction Data

> Train code specific LLM (before)

o Branching main pre-training run and continuing pre-training, followed by
iterative SFT (Llama 3 approach)

o Leverage to generate synthetic data, quality filtering

Recipe for SFT: Instruction Data

> Synthetic data generation

o Techniques: Self-Instruct, Evol-Instruct, OSS-Instruct, and more.

175 seed tasks with
1 instruction and
1 instance per task

Step 4: Filtering

Self-Instruct

Step 2: Classification

Task Pool Step 1: Instruction Generation Task Identification

N LM Instruction : Give me a quote from a LM
D famous person on this topic.
Step 3: Instance Generation
. Yes
Instruction : Find out if the given text is in favor of or against abortion.
-
Class Label: Pro-abortion Y,

Input: Text: I believe that women should have the right to choose whether or not

o t-first
they want to have an abortion. WputDrs LM

Instruction : Give me a quote from a famous person on this topic. w No

Input: Topic: The importance of being honest. -
Output: "Honesty is the first chapter in the book of wisdom." - Thomas Jefferson

Input-first

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh Hajishirzi. 2023. Self-instruct: Aligning language models with self-generated instructions. In
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 13484—13508, Toronto, Canada. Association for Computational Linguistics.

OSS-Instruct

— =
= B Seed code snippet
Q SRSIESolice b = Prompt (details omitted)
learn_model(
B PosNeg.py B program.cs tf_idfSvM, tf_idfNB, target) .| Please gain inspiration from the Language
B Log.cpp B strength.swift def get_clean_review(raw_review): code snippet to create a high- Model
letters_only = re.sub(quality programming problem...
E GrantInfo.ts B / "[*a-zA-Z]" s non . raw_review)
g
o OSS-INSTRUCT
() e ™~
Q Generated solution (details omitted) Generated problem (details omitted)
from sklearn.feature_extraction.text import TfidfVectorizer ... You are working on a natural language processing (NLP)
def get_clean_review(raw_review): ... project and need to create a program to preprocess and
def train_model(tf_idfSVM, tf_idfNB, reviews, labels): ... classify movie reviews... >
def classify_review(clean_review, tf_idfSVM, tf_idfNB): ...
e . . . i Your program should be able to preprocess new movie
train_model(tf_idfSVM, tf_idfNB, reviews, labels) reviews, train the model, and classify new reviews accurately.
cleaned_review = get_clean_review(...)... L)
o

Llama 3 adopted OSS-Instruct to generate synthetic code instruction data

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. 2024b. Magicoder: Empowering code generation with oss-instruct.
In International Conference on Machine Learning, pages 52632—52657. PMLR.

Recipe for SFT: Instruction Data

> Synthetic data generation

o Reasoning-based data for complex tasks

Reasoning vs. Non-reasoning Mode

Also known as “Thinking” vs “Non-Thinking” Mode

Thinking Mode | Non-Thinking Mode
<|im_start|>user <|im_start|>user

{query} /think<|im end|> | {query} /no think<|im end|>
<|im_start|>assistant <|im_start|>assistant
<think> <think>

{thinking content}

</think> </think>
{response}<|im_end|> {response}<|im_end|>

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025a.

Reasoning-based Data for Competitive Coding

Strong-to-Weak distillation (off-policy)

Programming
Questions, Unit tests & P —— . .~ R ~ .
5 B e ¢ <think> \ v <think> \ @)y
" \‘I i E ‘, ! i 34
& amy Code . Criti . i Cod
1) 1 1 I que I 1 e
Y, & !{‘ % *;; . l | Generation | “hunle> i Generation | </thinlc> i Execution
: | : : | :
1 I 1 : : 1
i @ ‘BG m 0 &, (i i python i i <judgement> 1
[I 1 . 1 s 1
\ J 1| # solution code ! | right/wrong i
_______________________________ ‘\:_‘___"_____/' \, </judgement> /'

Overview of the OpenCodeReasoning development pipeline.

Wasi Uddin Ahmad, Somshubra Majumdar, Aleksander Ficek, Sean Narenthiran, Mehrzad Samadi, Jocelyn Huang, Siddhartha Jain, Vahid Noroozi, and Boris Ginsburg.
Opencodereasoning-ii: A simple test time scaling approach via self-critique. arXiv preprint arXiv:2507.09075, 2025.

o e e i e e e

o o

“python

solution code

assert ...
assert ...
assert ...
assert ...

Distillation from DeepSeek-R1-0528

[DeepSeek-R1-0528 @2 OpenReasoning-Nemotron-32B [Z~J OpenReasoning-Nemotron-7B
I Qwen3-235B-A22B Z=Z OpenReasoning-Nemotron-14B

80+

(=]
o
T

S
[en)
T

Accuracy (in %)

Do
[en)
T

/
AAIl Score (Estmd) GPQA MMLU-Pro HLE LCB SciCode AIME 25~ HMMT Feb 25

Distill(Qwen2.5-*-Instruct) => OpenReasoning-Nemotron-*

https://huggingface.co/blog/nvidia/openreasoning-nemotron

Reasoning-based Data for Competitive Coding

$ Open Thoughts

DATA RECIPES FOR REASONING MODELS

Etash Guha, Ryan Marten, Sedrick Keh, Negin Raoof, Georgios Smyrnis, Hritik Bansal, Marianna Nezhurina, Jean Mercat, Trung Vu,
Zayne Sprague, et al. Openthoughts: Data recipes for reasoning models. arXiv preprint arXiv:2506.04178, 2025.

Recipe for SFT: Instruction Data

> Synthetic data generation

o Systematic quality assessment

Quality Assessment

Based on execution feedback or LLM judgements

Response = Tests

Category
Mining Base model Base model Base model Execution
(]_) | </> Concepts Instruction Response Tests Response
Code corpus Seed snippet :

Difficulty Response = Tests

(" Generic Seed Instructions

: = i OpenCodelnstruct Development Stages

1 Python Top-level %% Generated |

| Source Files Functions Instructions |

i A !

i‘ ﬂ E Execution

(2) Vi e i A & Engine
P « Y
Algorithmic
Seed Instructions \,7_

o e o e e

(1) Wei, Y, Cassano, F, Liu, J,, Ding, Y, Jain, N., Mueller, Z., de Vries, H., Werra, LV, Guha, A., ZHANG, L., 2024a. Selfcodealign: Self-alignment for code generation, in: The Thirty-eighth Annual Conference on Neural Information
Processing Systems. URL: https;//openreview.net/ forum?id=xXRnUU7xTL.
(2 Ahmad, WU, Ficek, A., Samadi, M., Huang, J., Noroozi, V,, Majumdar, S., Ginsburg, B., 2025a. Opencodeinstruct: A large-scale instruction tuning dataset for code llms. URL: https.//arxiv.org/ abs/2504.04030, arXiv:2504.04030.

Quality Assessment

Based on exe

cution feedback or LLM judgements

Category Response = Tedts
Mining Base model Base model Base model Execution
(]_) </> ’ Concepts Instruction Response Tedts Response
Code corpus Seed snippet :
Difficulty Response = Tedts

Generic Seed Instructions
Python

Source Files

Top-level \; Generated
Functions

@ = ER

4
I
1
i
i
1
i
i
1
i
i
\

Algorithmic
Seed Instructions

(1) Wei, Y, Cassano, F, Liu, J,, Ding, Y, Jain, N., Mueller, Z., de Vries, H., Werra, LV, Guha, A., ZHANG,
Processing Systems. URL: https;//openreview.net/ forum?id=xXRnUU7xTL.

Instructions

OpenCodelnstruct Development Stages

v‘;vv

’ Response ‘

~

Execution
Engine

N
; {
1
1
1
1
!
]
1
1
]
1
4

-’

Instruction ‘ Test ’ Judgment ‘

-
\',

J

L., 2024a. Selfcodealign: Self-alignment for code generation, in: The Thirty-eighth Annual Conference on Neural Information

(2 Ahmad, WU, Ficek, A., Samadi, M., Huang, J., Noroozi, V,, Majumdar, S., Ginsburg, B., 2025a. Opencodeinstruct: A large-scale instruction tuning dataset for code llms. URL: https.//arxiv.org/ abs/2504.04030, arXiv:2504.04030.

Quality Assessment

Based on execution feedback or LLM judgements

Selection strategy Data size Execution pass rate Pass@1
Random selection (all) 27.7k 24.1% 61.6
Random selection (subset) 15.6k 24.2% 61.6
Failures only 15.6k 0% 579
Passes only 15.6k 100.0% 65.2

Table: Pass@1 on HumanEval+ with different response selection strategies from SelfCodeAlign.

Wei, Y, Cassano, F, Liu, J., Ding, Y, Jain, N, Mueller, Z., de Vries, H.,, Werra, LV, Guha, A., ZHANG, L., 2024a. Selfcodealign: Self-alignment for code generation, in: The
Thirty-eighth Annual Conference on Neural Information Processing Systems. URL: https://openreviewnet/ forum?id=xXRnUU7xTL.

Post-training: Recipe for SFT

> Training Curriculum

O Data Selection: Data mixing and scaling.

O Training Strategy: Iterative and multi-stage SFT, heavy/lightweight SFT.

Training Curriculum: Data Mixing for SFT

> Mixing code data with other sources

Avg. # tokens Avg. # tokens
Dataset % of examples Avg. # turns Avg. # tokens in context in final response
General English 52.66% 6.3 974.0 656.7 317.1
Code 14.89% 2.7 753.3 378.8 374.5
Multilingual 3.01% 2.7 520.5 230.8 289.7
Exam-like 8.14% 2.3 297.8 124.4 173.4
Reasoning and tools 21.19% 3.1 661.6 359.8 301.9
Long context 0.11% 6.7 38,135.6 37,395.2 740.5
Total 100% 4.7 846.1 535.7 310.4

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The

llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

Table: Statistics of SFT data used for Llama 3 post-training.

Training Curriculum: Data Mixing for SFT

> (Coarse-to-fine SFT

o Coarse: Large-scale lower-quality/diverse data

o Fine: Small-scale high-quality data

Stage Data Source # Examples

RealUser-Instruct 0.7M
Stagel Large-scale Instruct 2.3 M

Infinity-Instruct 1.0M
McEval-Instruct 36 K

Stage? Evol-Instruct 111 K

€% Verified-Instruct 110K

Package-Instruct 110K

Table: Detailed SFT data statistics for OpenCoder post-training.

Siming Huang, Tianhao Cheng, Jason Klein Liu, Jiaran Hao, Liuyihan Song, Yang Xu, J Yang, JH Liu, Chenchen Zhang, Linzheng Chai, et al. 2024. Opencoder: The open
cookbook for top-tier code large language models. arXiv preprint arXiv:2411.04905.

Training Curriculum: Data Mixing for SFT

> Reasoning vs. Non-reasoning data

I I W

In general, reasoning-based samples > non-reasoning samples

DeepSeek-R1 => 600k reasoning, 200k non-reasoning SFT samples
Llama-Nemotron => 900k reasoning, 9M non-reasoning SFT code samples

Nemotron-H => 5:1 and 1: 1 ratio of reasoning to non-reasoning samples for stage 1and 2

Training Curriculum: Data Scaling

Supervised Fine-tuning of Qwen2.5-7B

LiveCodeBench V6

A [].2
1,039; V7\>< = A5 45.1
= (@]
2 582 ve@| || 2 _
— o
E 218; v5 @ 5 & <
3 0 > 38
E Q O
© v4 42 ©
(:’_)c gg V2 V°3 M4 3 8_ 8 ______________ 3 3_5 ___________________________
5 421) ﬁ < 331 DeepSeek-R1-Distill-Qwen-78B
18 v.l 2
1<>: P8.
18 42 6076 127 28

vi v2 Vv3 v4 V5 V6 V7

Number of Code Prompts (K
u pts (K) SFT Dataset Version

Zihan Liu, Zhuolin Yang, Yang Chen, Chankyu Lee, Mohammad Shoeybi, Bryan Catanzaro, and Wei Ping. Acereason-nemotron 1.1: Advancing math and code reasoning
through sft and rl synergy. arXiv preprint arXiv:2506.13284, 2025i.

Training Curriculum: SFT Strategy

> [Iterative SFT (before)

o Model improves and generates better synthetic data for subsequent iterations

> Multi-stage SFT (now)

o Coarse-to-fine SFT: initial stages leverage large-scale, lower-quality data, while
later stages refine the model using smaller but higher-quality datasets

> Lightweight vs. heavy SFT

o SFT can over-constrain the model, restricting exploration during the online RL
stage (lightweight SFT is suggested in Llama 4 post-training recipe)

Training Curriculum: SFT Strategy

Base Models

Flagship Models
Lightweight Models

Base Models

Stage 2
Reasoning RL

Stage 4
General RL

(N)
Stage 1 \r
Long-CoT Cold Start ,L
J
. J |
4 \)
N
Stage 3
Thinking Mode Fusion
\ Z

Qwen3-235B-A22B
Qwen3-32B

v

Strong-to-Weak Distillation

Qwen3-30B-A3B

14B/8B/4B/1.7B/0.6B

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen Huang, Chenxu Ly, et al. Qwen3 technical report. arXiv

preprint arXiv:2505.09388, 2025a.

