4. Post-training Code LMs:
Reinforcement Learning



Reinforcement Learning is Naturally Suited for Code

> Learning from Execution Feedback

Q@  Humans learn code through pretraining and RL — memorization first, debug later.

3@ Execution feedback is hard to hack, providing trustworthy rewards.

> Learning from Scalable Environment

Q  Code environments scale easily with sandbox and virtual setups.

O  The digital world allows synthetic environments.



Code RL

> Learning from Execution Feedback
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Shojaee, P, Jain, A., Tipirneni, S.,, & Reddy, C. K. (2023). Execution-based code generation using deep reinforcement learning. arXiv
preprint arXiv:2301.13816.



Code RL

Learning from Execution Feedback (Multi-turn)
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Gehring, J., Zheng, K., Copet, ], Mella, V,, Carbonneaux, Q, Cohen, T, & Synnaeve, G. (2024). Rlef: Grounding code llms in execution
feedback with reinforcement learning. arXiv preprint arXiv:2410.02089.

Provide a Python solution for the following competitive
programming question: Let’s call the string beautiful if it
does not contain a substring of length at least 2 which is
a palindrome. Recall that a palindrome [...]

Code Solution (turn 1)

def min_cost_to_beautiful (substring) :
while True:
found = False
for length in range(len(substring), 1, -1):
@

Public Tests: FAIL

Execution feedback

Your code failed the following tests:

- input ‘5A baacb 13 15 23° failed: Execution took too
long.

Give it another try. [...]

Code Solution (turn 2)

from functools import lru cache
def is_beautiful(s):
for length in range(2. len(s) + 1):

for i in range(len(s) - length + 1):

Public Tests: PASS
Submitting solution to Private Tests Execution



Inference-time Scaling Unlocks the Power of Code RL

> Inference-time scaling is all you need!
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https://openai.com/index/learning-to-reason-with-llms/
DeepSeek Al (2024). DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning. Nature.



Inference-time Scaling Unlocks the Power of Code RL

> The Core Idea: GRPO with rule-based reward

Group Relative Policy Optimization In order to save the training costs of RL, we adopt Group
Relative Policy Optimization (GRPO) (Shao et al., 2024), which foregoes the critic model that is
typically the same size as the policy model, and estimates the baseline from group scores instead.
Specifically, for each question g, GRPO samples a group of outputs {o01,0,- - , 06} from the old
policy mg,, and then optimizes the policy model 7y by maximizing the following objective:
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where € and B are hyper-parameters, and A; is the advantage, computed using a group of
rewards {ry,r,...,r¢} corresponding to the outputs within each group:
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DeepSeek AL (2024). DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning. Nature.



Code RL for Competitive Coding

> DeepCoder-14B: A Fully Open-Source 14B Coder at O3-mini Level
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Agentless RL for SWE

> SWE-RL: Advancing LLM Reasoning via Reinforcement
Learning on Open Software Evolution
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Chen, M., Tworek, ], Jun, H., Yuan, Q, Pinto, H. P. D. O, Kaplan, ], ... & Zaremba, W. (2021). SWE-RL: Advancing LLM Reasoning via
Reinforcement Learning on Open Software Evolution. arXiv preprint arXiv:2107.03374.



Agentic RL for SWE

> Train Real-World Long-Horizon Agents via Reinforcement
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Figure 1: SkyRL builds on top of VeRL, inheriting its rich support for learning algorithms. SkyRL
extends VeRL by introducing the agent layer: (1) Efficient asynchronous multi-turn rollouts, (2)
Generic tool use, and (3) Generic and scalable environment execution.

https://novasky-ainotion.site/skyrl-vO#1ec8f0016b9d8002b700fd5431e48fc6



Agentic RL for SWE

> Scalable Environment Infra is important for SWE RL
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Sub-Agent RL for SWE

> RL for Multi-Turn, Fast Context Retrieval

https://cognition.ai/blog/swe-grep

There are a few reasons why we think that context retrieval is a uniquely suited task for a custom
subagent:

* It conserves context budget (and intelligence) for the main agent. By having the main agent dele-
gate retrieval to a subagent, we save on (valuable) agent tokens and avoid polluting the agent's
context with irrelevant information. This allows the main agent to only attend to the relevant tokens.
This avoids a whole host of “context pollution” failure modes as better explained by Drew Breunig's
famous How Contexts Fail.

Retrieval is a versatile, broadly useful ability. All layers of the Al-assisted coding stack can benefit
from fast and agentic context retrieval. From what an autocomplete model sees before giving a
suggestion, to Cascade before implementing a set of changes, to Devin during a big PR, context re-
trieval subagents are the perfect “hand-off point” between a smart model & a fast model.

Retrieval is a verifiable task. Often sub-agents are implemented such that they summarize their
findings for the main agent. This has two downsides: 1. A fast model summary can draw wrong con-
clusion and mislead the smart model. 2. It is hard to grade free-form summaries. Instead, the Fast
Context sub agent is designed to retrieve a list of files with line ranges. For this we can define an
objective ground-truth dataset, which allows us to compute a clean deterministic reward to do RL.



Online Code RL

> Improving Cursor Tab with online RL

To use RL to improve Tab, the cursor defined a reward that encourages accepted suggestions while discouraging the
display of suggestions to the user that are not accepted.

New Tab model makes fewer suggestions
while having a higher accept rate.

New RL model
+28% Accept rate

Old model Old model

New RL model
-21% Shown rate

I ' l Shown rate Accept rate

https://cursor.com/blog/tab-rl



What’s Next in Code RL?

> Scaling Code Task in RL

Current code RL tasks are relatively narrow, mostly focusing on competitive coding and issue
resolution. The community needs to define a broader range of verifiable tasks that can drive
model improvement and better generalization across different coding abilities.

> Scaling Environment in RL

Most current environments are manually built. The community should explore more automated
ways to scale. Letting coding agents themselves build and modify environments could become a
very interesting and promising direction.

> Scaling Reward in RL

So far, rewards are mostly execution-based outcome rewards. Introducing reward models or
process reward models offers a promising path forward, making RL more efficient and providing
finer-grained learning signals.



