
6. Evaluating Code LMs:
Repo-level & Agentic Code Generation

Repo-level Benchmarks: CrossCodeEval

➢ CrossCodeEval: diverse, multilingual benchmark for cross-file code
completion built from real-world repos in Python, Java, TS, and C#
○ Tasks extracted using static analysis
○ Measure repo understanding and retrieval methods

➢ Similar work: RepoEval, RepoBench, …

Agentic Benchmarks: The SWE-Bench Family

❌ -> ✅ Fail to Pass
✅ -> ✅ Pass to Pass

➢ SWE-Bench: real-world software engineering to be a rich,
sustainable, and challenging testbed for evaluating the next
generation of language model

Agentic Benchmarks: The SWE-Bench Family

➢ SWE-Bench Full: 2.3k tasks over 12 repos
○ Expensive to run across {agent scaffold x models}

➢ SWE-Bench Lite: a smaller, carefully selected subset of 300
tasks from SWE-Bench Full
○ Reduce evaluation costs while maintaining benchmark quality
○ Enable faster iteration cycles for model development
○ Provide a more accessible entry point for research groups

Agentic Benchmarks: The SWE-Bench Family

➢ Problems with SWE-Bench Full/Lite:
○ Issue underspecified
○ Paired with overly narrow/misaligned unit tests that reject

reasonable solutions
○ Sometimes impossible to run reliably due to

environment/setup issues

➢ SWE-Bench Verified: 500 human-verified tasks
○ Human annotated: 1) whether the issue description is

underspecified 2) whether the FAIL_TO_PASS unit tests filter
out valid solutions 3) difficulty level

Agentic Benchmarks: The SWE-Bench Family

Agentic Benchmarks: The SWE-Bench Family
SWE-Bench
+ Multi-PL: SWE-PolyBench (AWS), Multi-SWE-Bench (Seed)
+ Multimodal: SWE-Bench Multimodal (SWE-Bench team)
+ Performance Optimization: SWE-Perf (Tiktok)
+ Economy Impact: SWE-Lancer (OpenAI)
+ Difficulty & Diversity: SWE-Bench Pro (Scale)
+ Live: SWE-Bench-Live (Microsoft)
+ Bash-only: SWE-Bench Bash Only (SWE-Bench team)
+ Many, many others

Agentic Benchmarks: Multi PL
➢ SWE-PolyBench: 2,110 tasks in Java (165),

JavaScript (1017), TypeScript (729) and Python
(199)
○ Stratified & Verified subset
○ Much stronger performance in Python

➢ Multi-SWE-Bench: 1,632 tasks in Java,
TypeScript, JavaScript, Go, Rust, C, and C++
○ Annotated
○ RL Dataset

Agentic Benchmarks: Multimodal
➢ SWE-Bench-Multimodal: 617 tasks from 17 JavaScript libraries

○ Evaluates models' ability to interpret and act on information presented in
both textual and visual formats.

○ Top-performing model/scaffold (2025-07): only 35.98% resolved

Agentic Benchmarks: Performance Optimization
➢ SWE-Perf: 140 tasks from the same 12 repos in SWE-Bench

○ Evaluates LLMs on code performance optimization task
○ Metrics: Apply/Correctness/Performance

Agentic Benchmarks: Economy Impact
➢ SWE-Lancer: 1,488 tasks from Upwork, $1M payout in total

○ Tests how well LLMs can actually perform paid contract work
○ Covers both IC tasks (bug fixes → large feature builds) and management

tasks (pick best technical proposals)

Agentic Benchmarks: Difficulty
➢ SWE-Bench Pro: 1,865 long-horizon tasks from 41 repositories

○ Realistic, complex, enterprise-level problems; multi-file modifications
spanning hundreds of lines

○ Use copyleft repos to reduce contamination
○ Public / Commercial / Held-out

Agentic Benchmarks: Commit0
● SWE-Bench-X: generating patches to resolve GitHub issues, vs
● Commit0: write complete libraries from scratch

○ 57 Python libraries, with a “lite” split (16 smaller libraries) and “all” (full
set).

○ Specification document + Unit test suite + Repo Skeleton => full repo

Agentic Benchmarks: JAWS-Bench
➢ JAWS-Bench (Jailbreaks Across WorkSpaces)

○ Evaluates code agent security using executable-aware judges that
measure whether agents actually produce runnable malicious code.

○ Three settings: prompt only, single file, multi-files
○ Wrapping an LLM in an agent significantly amplifies risk as initial

refusals are often overturned during later planning and tool-use steps.

Benchmarks: Summary

Benchmarks: Summary

Benchmarks: Summary

