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Bridging Between Code and Natural Language

> Code as mental scaffold for Reasoning

o Programming structures that shape and support human reasoning processes
> Code as interactive tool for Reasoning

o Direct use of executable code to think through and solve problems
> Code as data foundation for Reasoning

o The foundational role of code data in building capabilities



Scratchpad: Step-by-Step in Code

> When prompted to perform operations "step by step” and display intermediate steps in a
"scratchpad”, language models can successfully handle complex computations

state: {}
DIRECT EXECUTION PREDICTION SCRATCHPAD TRACING Line: def remove Occ(s ,ch):
state: {"remove_Occ": "<callable_object remove_Occ>"}
Consider the following Python function: Line: output = remove_Occ("PHP","P")
side £ g Ty HhC Consider the following Python function: state: {"ch": "P", "s": "PHP"}
line: for i in range(len(s)):
def remove_Occ(s,ch): def remove_Occ(s,c?): . state: {"ch": "P“,( nSys "PHP;, "i": 0}
505 & for i in range(len(s)): line: if (s[i] == ch):
for £ D rénge(len(s)). if (s[il == ch): state: {"ch": "P", "s": "PHP", "i": @}
if (s[i] E: <:h)§| ’ 1 s=s[0: il +sli+1:] Une: s =50 : il +sMi+1:]
s =s[0 :i] + s[i + 1: break state: {"ch": "P", "s": "HP", "i": @}
break for i in range(len(s) - 1,-1,-1): Lafge Language line: break
£ L. en) o 1o i (SEf] == ch?: . Model state: {echas "P", "s": "HP", "i": 0}
or 1 1in range(len(s il : s =s[0 : il + s[i +1:] line: for i in range(len(s) - 1,-1,-1):
if (s[i] == ch): break state: {"ch": "P", "s": "HP", "i": 1}
_ Gy o aq) e § & i return s line: if (s[i] == ch):
s =s[0 : i] + s[i 21 state: {"ch": "P", "sh: "HRU, Win: 1}
break output = remove_Occ("PHP","P") line: s[i +1:]
state: {"ch": 1}
return s What is the execution trace? line: breal
state: I chE: I PLMEE S & Sl
Fill in the ??? below: line: return s
assert remove_Occ("PHP" : uPu) == 772 state: {"remove_Occ": "<callable_object remove_Occ>",

"output”: "H"Y

Direct Reasoning in Code Step-by-Step Reasoning in Code

Nye et al., “Scratchpads for Intermediate Computation with Language Models”, 2021



Chain-of-Thought: Step-by-Step in NL

> Chain-of-thought prompting incorporates reasoning steps in the prompt and
significantly improves language model performance on reasoning tasks

Standard Prompting Chain-of-Thought Prompting
Model Input Model Input
Q: Roger has 5 tennis balls. He buys 2 more cans of Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now? tennis balls does he have now?
A: The answer is 11. A: Roger started with 5 balls. 2 cans of 3 tennis balls

each is 6 tennis balls. 5 + 6 = 11. The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples Q: The cafeteria had 23 apples. If they used 20 to
do they have? make lunch and bought 6 more, how many apples
do they have?

Model Output Model Output

; ; A: The cafeteria had 23 apples originally. They used
: 7.
A: The answer is 27. 3¢ 20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 + 6 = 9. The
answer is 9.

Wei et al.,, Chain-of-Thought Prompting Elicits Reasoning in Large Language Models, 2022



POET: Reasoning Like Program Executors

> POET teaches language models to improve natural language reasoning by learning
from programs and their execution results.

Pre-training by Program Execution POET-Math POET-Logic
Y hY ( ) . .
Program Context | _ _,1 Program Executor I_ _ Variable Premise
(eg, database, variables in python) }\ (eg» MySQL, python interpreter)ll R = 2
D tt— \ =) 5 x=152.0; P—q;
Program ’ | Execution I ~ / S 3 _ . .
[ T Language Model Result § =5 y=99.0; Sr—>-aq;
. | ) z=70.3; rom;
Transfer Reasoning Knowledge into Language Model %‘3 - o
= 5 Math Expression Conclusion
=] \ =
Fine-tuning for Natural Language Reasoning 5 §° X+y-2 por
. n-‘ 7
Natural Context ( ) T
[ (s s J\ = Number Implication
Language Model Answer 2
[ Sentence e J 180.7 True
(eg, question in reading comprehension)

Pi et al., “Reasoning Like Program Executors”, EMNLP 2022



Code I/O: Reasoning via Code Input-Output Prediction

> Code I/O improves language models' reasoning abilities across diverse tasks by having
them predict code inputs and outputs in natural language.

Verification: Re-Execute ¢@

—> Reference Code Revision! ( ) -- <Chain of Thought> -
a <Chain of Thought>
EXEUe What is the input? - <Chain of Thought> -
- {“input”: <the input>}
- Input
" Generator Sample XN
- B o
% What is the output?  * <Chain of Thought> -
- <Chain of Thought> -
Raw Code — Query “You are given --” { output”: <the output>}
1st Stage Wino GSM MMLU LC CRUX BBH Zebra Kor Live
Dataset # (M) |Grande DROP gx MATH GPQA _.STEM -0 -I AVG

-O -EN -ZH Logic Bench Bench

QOwen 2.5 Coder 7B
2nd Stage Only | 669 70.7 834 716 415 772 20.7 61.3 60.0 68.3 70.6 10.9 38.7 26.0 |54.8

CODEI/O 3.5 76.4 864 719 [4331 773 (23716356 64.9 69.3 728 10.7 | 443 285 |572
CODEI/O++ 3.5 | 669 9.0 857 721 406 779 242 62.5 67.9710:742 10.7

Li et al., “Codel/O: Condensing Reasoning Patterns via Code Input-Output Prediction”, 2025, arXiv preprint arXiv:2502.07316v2.



CWM: Code World Model

> Given a source code context and a marker of the trace starting point, CWM predicts a
series of stack frames representing the Program states and the actions (executed code).

<|trace_context_start|>
def count(s, t):
n=20
for c in s:
n += int(c == t)
return n

count("strawberry", "r") # << START_OF_TRACE

<|frame_sep|>
<|call_sep|> {"s": "'strawberry'", "t": "'r'"}

<|frame_sep|>

<|action_sep|> def count(s, t):

<[line_sep|> {"s": "..", "t": ".."} <|action_sep|>
<|frame_sep|>

<|line_sep[> {"s": "..", "t": "..", "n": "@"} <|action_sep|>
<|frame_sep|>

<|line_sep|> {"s": "..", "t": "..", "n": "..", "c": "'s'"} <|action_sep|>
<|frame_sep|>

<|return_sep|> <|action_sep|> returnn <|arg_sep|>

<|frame_sep|>

FAIR CodeGen Team et al. (2025). CWM: An Open-Weights LLM for Research on Code Generation with World Models. arXiv preprint arXiv:2510.02387.

n=20

for ¢ in s:
n += int(c == t)
ngn



PAL: Program Aided Reasoning

>  PAL uses LLMs to decompose NL problems into programmatic steps, then
offloads execution to a Python interpreter to avoid arithmetic errors.

—( Input )} —( Input )}
\ Q: Roger has 5 tennis balls. He buys 2 more cans of \

tennis balls. Each can has 3 tennis balls. How many
Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls does he have now?
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now? A: Roger started with 5 tennis balls.
tennis balls = 5
A: Roger started with 5 tennis balls. 2 cans of 3 tennis 2 cans of 3 tennis balls each is
balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11. bought balls = 2 * 3
tennis balls. The answer is
Q: The bakers at the Beverly Hills Bakery baked 200 answer = tennis balls + bought balls
loaves of bread on Monday morning. They sold 93 loaves - -
in the morning and 39 loaves in the afternoon. A grocery Q: The bakers at the Beverly Hills Bakery baked 200
store returned 6 unsold loaves. How many loaves of loaves of bread on Monday morning. They sold 93 loaves
bread did they have left? in the morning and 39 loaves in the afternoon. A grocery
store returned 6 unsold loaves. How many loaves of bread

K / Qid they have left? /
Chain-of-Thought Program-Aided Language Models

Gao et al. “PAL: Program-Aided Language Models.” arXiv preprint arXiv:2211.10435



PoT: Program of Thoughts

> PoT disentangles computation from reasoning by using LLMs to express reasoning

as executable programs, while delegating all calculations to an external computer

Question: In Fibonacci sequence, it follows the rule that each number is equal to the sum of the preceding two numbers.

{The first number is 0, the second number is 1, therefore, the
ithird number is 0+1=1. The fourth number is 1+1=2. The fifth
number is 1+2=3. The sixth number is 2+3=5. The seventh
[number is 3+5=8. The eighth number is 5+8=13.
|..... (Skip 1000 tokens)

|The 50th number is 32,432,268,459.

CoT

Assuming the first two numbers are 0 and 1, what is the 50th number in Fibonacci sequence?

length_of_fibonacci_sequence = 50

fibonacci_sequence = np.zeros(length_of )

fibonacci_sequence[0] = 0

fibonacci_sequence[1] = 1

For i in range(3, length_of_fibonacci_sequence):
fibonacci_sequenceli] = fibonacci_sequenceli-1] +

PoT

v

32,432,268,459

X

fibonacci_sequenceli-2]
# python {7

ans = fibonacci_sequence[-1]
12,586,269,025

| 4

Chen et al. “Program of Thoughts Prompting: Disentangling Computation from Reasoning for Numerical Reasoning Tasks.” Transactions on Machine Learning Research, 2023



ToRA: Tool-Integrated Reasoning

> ToRA interleaves natural language reasoning with program-based tool calls,
combining the strengths of semantic analysis and precise computation

Problem: Suppose that the sum of the squares of two complex
numbers x and yis 7 and the sum of their cubes is 10. List all
possible values for x + y, separated by commas.

We are given that x2 +

y2=7and x3 +y3 =

10. We can factor x* +
| y3 toget (x+ y)(x? —
| xy +y2).

| Thus, we can write

|10 = (x +y)(7). It

| follows that x + y must
divide 10.

The only possibilities

are thatx + y is
1,2,50r 10. x

o

[olole)

(a) Rationale-based

import math

def solution():
X = symbols('x’), y = symbols('y")
X2 4y*2=7
X*3+y**3=10

x = (-1 + math.sqrt(17))/ 2

y = (-1 - math.sqrt(17))/ 2

# Get all possible values for x+y
result =[x +y, -x -y]

P >>> SyntaxError: cannot assign to

J

expression.

J

(b) Program-based

|
|
| Let’s use "Sympy " to calculate and print all

|

| possible values for x + y,
[

n

from sympy import symbols, Eq, solve, simplify

def possible_values():
X, y =symbols('x y')
eql =Eq(x**2+y**2,7)
eq2 =Eq(x**3 +y**3, 10)
solutions = solve((eq1,eqg2), (x, y))
sums = [simplify(sol[0] + sol[1]) for sol in
solutions]
return sums
print(possible_values())

@ >>>[5-51,1,4,4]
109
Removing duplicates, the possible values for

x + y are \boxed{-5, 1, 4}. rz

P
¢ : Q . o,
ﬁ ~ Rationale | Cgf raiomc] (€) Tool-integrated
=

: Reasoning

"‘q-ﬁ:@-" (Format used by ToRA)
| 04

Gou et al. “ToRA: A Tool-Integrated Reasoning Agent for Mathematical Problem Solving.” International Conference on Learning Representations (ICLR), 2024



SimpleTIR: RL Enables Multi-Turn TIR

> SimpleTIR stabilizes multi-turn tool-integrated reasoning by filtering out “void
turns” that generate neither code nor answers, and train LMs via end-to-end RL.

-

Xue et al. “SimpleTIR: End-to-End Reinforcement Learning for Multi-Turn Tool-Integrated Reasoning.” arXiv preprint arXiv:2509.02479, 2025



The Code & Language Mixture for Pre-training

> While balancing Code, Math, and Text data is crucial for pre-training, limited evidence

exists on how this balance scales to large datasets.

> Experimental results from Qwen2.5-Coder indicate that 7:2:1 (Code:Text:Math) achieves a

good balance.

Token Ratio Coding Math General [ —
Code Text Math | Common BCB | MATH GSM8K | MMLU CEval HellaSwag 8
100 0 0 49.8 40.3 10.3 23.8 42.8 35.9 58.3 31.3
85 15 5 43.3 362 | 26.1 525 56.8 571 70.0 48.9
70 20 10 48.3 38.3 33.2 64.5 62.9 64.0 73.5 55.0

Table 3: The performance of Qwen2.5-Coder training on different data mixture policy.

Hui et al., 2024. Qwen2.5-Coder Technical Report. arXiv:2409.12186.



The Code & Language Mixture for Pre-training

> Three-stage pretraining (11.1T tokens total) gradually upsampled Math and Code data while
reducing web content, then applied mid-training for specialized capabilities.

Math 3% 1
Code 12%| L T
Web 85%
1 75%
63%
Phase | Phase Il Phase Il
Description: Base training Description: High quality injection Description: LR Decay
Duration: 8T tokens Duration: 2T tokens Duration: 1.1T tokens
Datasets: Base mix for pretraining Datasets: Adding Stack-Edu, FineMath4+, Datasets: Upsampling high quality
Web: FineWeb-Edu, DCLM, FineWeb2, FineWeb2-HQ InfiWebMath4+, MegaMath (incl. Qwen code/math datasets and adding
Code: The Stack v2 (16 langs), StarCoder2 PRs, Q&A, Pro synthetic rewrites, and text instruction/reasoning data such as
code interleaved blocks) OpenMathReasoning

Jupyter/Kaggle NBs, GH issues, StackExchange
Math: FineMath3+ | InfiWebMath3+

Elie et al., 2025, “SmolLM3: smol, multilingual, long-context reasoner”. https.//huggingface.co/blog/smollm3



The Code & Language Mixture for CPT

> Lemur paper found that a 10:1 (Code:Text) ratio works well for Llama’s continual
pre-training (CPT), but predicting optimal data mixture ratios remains challegning

i E? Code-Centric I ) Supervised Lemur-Chat |
* Base Model Pre-training  « Base Model Fine-tuning  « Chat Model
_ —_—
e Focus on Natural  + 90B Tokens * Natural Language + 300K Examples * Language Agent
Language & Code
Text Code
Model QA Reason Math Python SQL  MCode DS Avg
MMLU BBH GSM8K HE MBPP Spider MultiPL-E DS-1000
StarCoder-15B 30.8 33.2 89 33.6 52.7 58.3 25.3 26.0 33.6
StarCoderPlus-15B 42.0 36.2 177 262 37.0 4838 214 194 31.1
CodeLlama-34B 52.8 422 327 48.8 55.0 684 36.4 31.8 46.0
Llama-2-70B 68.9 51.2 56.8 30.5 454 60.0 244 11.3  43.6

Lemur-70B 64.5 51.6 54.9 354 53.2 628 30.4 30.7 479

Xu et al., 2024. “Lemur: Harmonizing Natural Language and Code for Language Agents”. arXiv:2310.06830.



Influence from Code to Reasoning

> Reasoning depends more on patterns of procedural demonstration than on memorised
answers. For reasoning, key sources consist of maths, StackExchange, ArXiv, and code.

function eqOfline (x1, yl, x2, y2) { If a straight line passing through the points
if (x1 === x2) { P(z1,y1), Q(z2,y2) is making an angle 6 with the
// Handle a vertical line positive X -axis, then the slope of the straight line is:
return ‘x = ${x1}";
} else { A %%
// Calculate the slope (3)92 !
const m = (y2 - yl) / (x2 - x1); ©) Yo —y1
const b = yl - m * x1; To—T1
// Return y = mx + b (D) sin 6
return ‘y = ${m}x + ${b}";
} Solution:
} Correct answer: (C)

Ruis et al., 2024. “Procedural Knowledge in Pretraining Drives Reasoning in Large Language Models” arXiv:2411.12580v2.



