Code and Natural Language

7. Bridging between

Bridging Between Code and Natural Language

- Code as mental scaffold for Reasoning
 - Programming structures that shape and support human reasoning processes
- Code as interactive tool for Reasoning
 - Direct use of executable code to think through and solve problems
- Code as data foundation for Reasoning
 - The foundational role of code data in building capabilities

Scratchpad: Step-by-Step in Code

When prompted to perform operations "step by step" and display intermediate steps in a "scratchpad", language models can successfully handle complex computations

```
DIRECT EXECUTION PREDICTION
Consider the following Python function:

def remove_Occ(s,ch):
    for i in range(len(s)):
        if (s[i] == ch):
            s = s[0 : i] + s[i + 1:]
            break
    for i in range(len(s) - 1,-1,-1):
        if (s[i] == ch):
            s = s[0 : i] + s[i + 1:]
            break
    return s

Fill in the ??? below:
assert remove_Occ("PHP", "P") == ???
```

Direct **Reasoning** in Code

```
SCRATCHPAD TRACING
                                                                       line: def remove_Occ(s,ch):
                                                                       state: {"remove_Occ": "<callable_object remove_Occ>"}
                                                                       line: output = remove_Occ("PHP", "P")
Consider the following Python function:
                                                                       state: {"ch": "P", "s": "PHP"}
                                                                                for i in range(len(s)):
def remove_Occ(s,ch):
                                                                       state: {"ch": "P", "s": "PHP", "i": 0}
    for i in range(len(s)):
                                                                                     if (s[i] == ch):
       if (s[i] == ch):
                                                                       state: {"ch": "P", "s": "PHP", "i": 0}
           s = s[0 : i] + s[i + 1:]
                                                                                        s = s[0 : i] + s[i + 1:]
                                                                       state: {"ch": "P", "s": "HP", "i": 0}
                                            Large Language
    for i in range(len(s) - 1,-1,-1):
                                                                       line:
                                                                                         break
       if (s[i] == ch):
                                                                       state: {"ch": "P", "s": "HP", "i": 0}
                                                  Model
           s = s[0 : i] + s[i + 1:]
                                                                                for i in range(len(s) - 1,-1,-1):
           break
                                                                       state: {"ch": "P", "s": "HP", "i": 1}
                                                                                     if (s[i] == ch):
   return s
                                                                       state: {"ch": "P", "s": "HP", "i": 1}
output = remove_Occ("PHP", "P")
                                                                                        s = s[0:i] + s[i+1:]
                                                                       state: {"ch": "P", "s": "H", "i": 1}
What is the execution trace?
                                                                       line:
                                                                                        break
                                                                       state: {"ch": "P", "s": "H", "i": 1}
                                                                       state: {"remove_Occ": "<callable_object remove_Occ>",
                                                                        "output": "H"}
```

Step-by-Step Reasoning in Code

Chain-of-Thought: Step-by-Step in NL

Chain-of-thought prompting incorporates reasoning steps in the prompt and significantly improves language model performance on reasoning tasks

Standard Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The answer is 27.

Chain-of-Thought Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls, 5 + 6 = 11. The answer is 11.

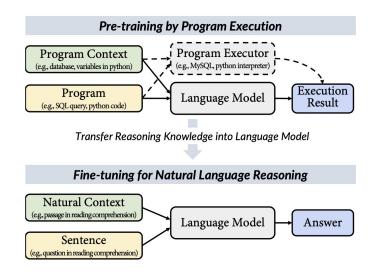
Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

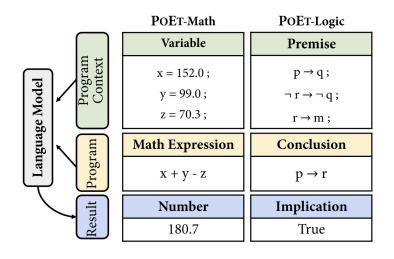
Model Output

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.

POET: Reasoning Like Program Executors

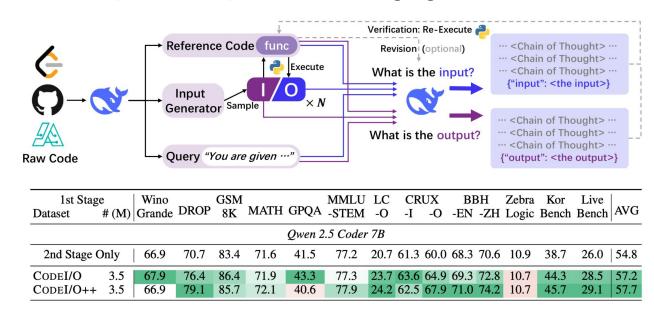
POET teaches language models to improve natural language reasoning by learning from programs and their execution results.





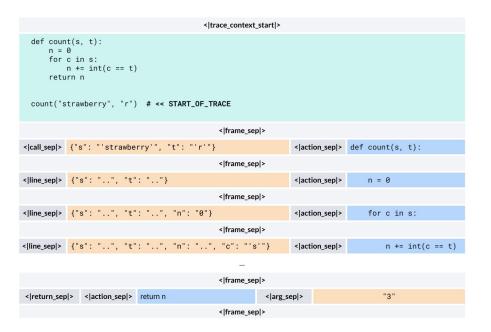
Code I/O: Reasoning via Code Input-Output Prediction

Code I/O improves language models' reasoning abilities across diverse tasks by having them predict code inputs and outputs in natural language.



CWM: Code World Model

> Given a source code context and a marker of the trace starting point, CWM predicts a series of stack frames representing the Program states and the actions (executed code).



PAL: Program Aided Reasoning

> PAL uses LLMs to decompose NL problems into programmatic steps, then offloads execution to a Python interpreter to avoid arithmetic errors.

Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 tennis balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The bakers at the Beverly Hills Bakery baked 200 loaves of bread on Monday morning. They sold 93 loaves in the morning and 39 loaves in the afternoon. A grocery store returned 6 unsold loaves. How many loaves of bread did they have left?

Chain-of-Thought

Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 tennis balls.

tennis balls = 5

2 cans of 3 tennis balls each is

bought_balls = 2 * 3

tennis balls. The answer is

answer = tennis_balls + bought_balls

Q: The bakers at the Beverly Hills Bakery baked 200 loaves of bread on Monday morning. They sold 93 loaves in the morning and 39 loaves in the afternoon. A grocery store returned 6 unsold loaves. How many loaves of bread did they have left?

Program-Aided Language Models

PoT: Program of Thoughts

> PoT disentangles computation from reasoning by using LLMs to express reasoning as executable programs, while delegating all calculations to an external computer

Question: In Fibonacci sequence, it follows the rule that each number is equal to the sum of the preceding two numbers. Assuming the first two numbers are 0 and 1, what is the 50th number in Fibonacci sequence?

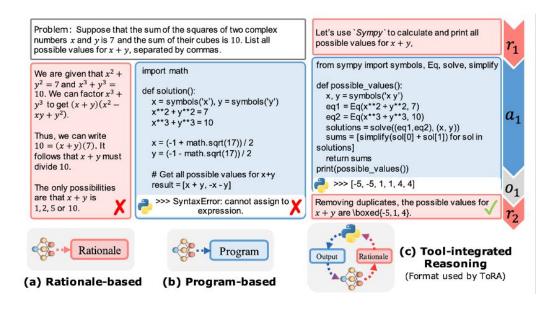
The first number is 0, the second number is 1, therefore, the third number is 0+1=1. The fourth number is 1+1=2. The fifth number is 1+2=3. The sixth number is 2+3=5. The seventh number is 3+5=8. The eighth number is 5+8=13. (Skip 1000 tokens)

The 50th number is 32,432,268,459.

```
length_of_fibonacci_sequence = 50
fibonacci_sequence = np.zeros(length_of_)
fibonacci_sequence[0] = 0
fibonacci_sequence[1] = 1
For i in range(3, length_of_fibonacci_sequence):
    fibonacci_sequence[i] = fibonacci_sequence[i-1] +
    fibonacci_sequence[i-2]
ans = fibonacci_sequence[-1]
```


ToRA: Tool-Integrated Reasoning

ToRA interleaves natural language reasoning with program-based tool calls, combining the strengths of semantic analysis and precise computation



SimpleTIR: RL Enables Multi-Turn TIR

SimpleTIR stabilizes multi-turn tool-integrated reasoning by filtering out "void turns" that generate neither code nor answers, and train LMs via end-to-end RL.

The Code & Language Mixture for Pre-training

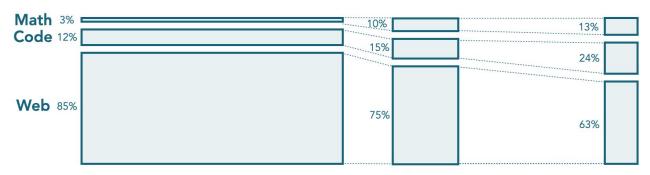
- > While balancing **Code**, **Math**, and **Text** data is crucial for pre-training, limited evidence exists on how this balance scales to large datasets.
- > Experimental results from Qwen2.5-Coder indicate that 7:2:1 (Code:Text:Math) achieves a good balance.

То	ken Ra	tio	Coding		Math			A51.04.000		
Code	Text	Math	Common	BCB	MATH	GSM8K	MMLU	CEval	HellaSwag	Average
100	0	0	49.8	40.3	10.3	23.8	42.8	35.9	58.3	31.3
85	15	5	43.3	36.2	26.1	52.5	56.8	57.1	70.0	48.9
70	20	10	48.3	38.3	33.2	64.5	62.9	64.0	73.5	55.0

Table 3: The performance of Qwen2.5-Coder training on different data mixture policy.

The Code & Language Mixture for Pre-training

> Three-stage pretraining (11.1T tokens total) gradually upsampled **Math** and **Code** data while reducing web content, then applied mid-training for specialized capabilities.



Phase I

Description: Base training **Duration:** 8T tokens

Datasets: Base mix for pretraining

Web: FineWeb-Edu, DCLM, FineWeb2, FineWeb2-HQ Code: The Stack v2 (16 langs), StarCoder2 PRs, Code: Jupyter/Kaggle NBs, GH issues, StackExchange

Math: FineMath3+ | InfiWebMath3+

Phase II

Description: High quality injection

Duration: 2T tokens

Datasets: Adding Stack-Edu, FineMath4+, InfiWebMath4+, MegaMath (incl. Qwen Q&A, Pro synthetic rewrites, and text code interleaved blocks)

Phase III

Description: LR Decay

Datasets: Upsampling high quality code/math datasets and adding instruction/reasoning data such as

OpenMathReasoning

The Code & Language Mixture for CPT

Lemur paper found that a 10:1 (Code:Text) ratio works well for Llama's continual pre-training (CPT), but predicting optimal data mixture ratios remains challegning

	Text				Code				
Model	QA Reason Math		Python		SQL	MCode	DS	Avg	
	MMLU	BBH	GSM8K	HE	MBPP	Spider	MultiPL-E	DS-1000	
StarCoder-15B	30.8	33.2	8.9	33.6	52.7	58.3	25.3	26.0	33.6
StarCoderPlus-15B	42.0	36.2	17.7	26.2	37.0	48.8	21.4	19.4	31.1
CodeLlama-34B	52.8	42.2	32.7	48.8	55.0	68.4	36.4	31.8	46.0
Llama-2-70B	68.9	51.2	56.8	30.5	45.4	60.0	24.4	11.3	43.6
Lemur-70B	64.5	51.6	54.9	35.4	53.2	62.8	30.4	30.7	47.9

Influence from Code to Reasoning

Reasoning depends more on patterns of procedural demonstration than on memorised answers. For reasoning, key sources consist of maths, StackExchange, ArXiv, and code.

Positively influential code

```
function eqOfLine(x1, y1, x2, y2) {
  if (x1 === x2) {
    // Handle a vertical line
    return 'x = ${x1}';
  } else {
    // Calculate the slope
    const m = (y2 - y1) / (x2 - x1);
    const b = y1 - m * x1;
    // Return y = mx + b
    return 'y = ${m}x + ${b}';
  }
}
```

Positively influential math

If a straight line passing through the points $P(x_1, y_1), Q(x_2, y_2)$ is making an angle θ with the positive X-axis, then the slope of the straight line is:

- (A) $\frac{y_2 + y_1}{x_2 + x_1}$
- (B) θ
- (C) $\frac{y_2 y_1}{x_2 x_1}$
- (D) $\sin \theta$

Solution:

Correct answer: (C)