8. Frontier Topics

The Frontier of Code Intelligence

What is the ultimate goal of Code Intelligence?
Write correct code for software? Not really...
Code is the tool & interface that connects to the real world.

Think Beyond Writing Code.

Code Language Models for FOMA+ MATH

> Formal languages like Lean can be used to write not only conventional

programs but also mathematical definitions, theorems, and proof.

/

Proof tree
n:N Localco
FaddOn=n I Goal

Tactic
induction n

rfl

-

Fadd00=0

n":N
ih:addOn’=n
Fadd 0 (n’+1)=n"+1

simp [add, ih] l

v

De Moura, L., Kong, S., Avigad, J., Van Doorn, F, & von Raumer, J.
(2015, July). The Lean theorem prover (system description). In
International Conference on Automated Deduction (pp. 378-388).

Cham: Springer International Publishing.

Lean file

—

inductive Nat where
| zero : Nat

| succ : Nat - Nat

def add (m n : Nat) :

match n with
| .zero =>m

| .succ n' => .succ (add m n')

theorem add_zero (n :

induction n with
| zero => rfl

| succ n ih => simp [add, ih]

: add .zero n =n := by

Project O GitHub

leanprover-community/
mathlib4

teorth/pfr

ImperialCollegeLon
don/FLT

Code Language Models for FOMA+ MATH

> Code LMs can help automating proofs.

Given informal mathematics, autoformalization automatically translates it into formal
theorems and proofs, and then theorem proving generates formal proofs.

N
Theorem 1. There exists an infinite number of primes.
I
Proof. Let n be an arbitrary positive integer, and let |
p € Z* be a prime factor of n!+1. We can derive p > n |
by noting that n! + 1 cannot be divided by positive
el = integers from 2 to n. Since n is arbitrary, we have !
/ \ proved that the number of primes is infinite. ol
| Theoremproving _—T——__ = = M e e e = &t
Auto- 1
[I‘Wli formalization |
B —_—l
[p , | Formaltheorem g
w sy vty L1 FOIrMatlpProor | Y s=er] 0 e e em em o om om o m om o e o on e e e e e e e e mm e em em em e e e e -
| statement 1 Y o
theorem exists_infinite_primes (n : N) : 3 p, ns p A Prime p :=
| I ' let p := minFac (n ! + 1)
Informal \ / Formal 1 have f1 : n ! + 1 # 1 := ne_of_gt <| succ_lt_succ <| factorial_pos _
math N - - o~ math llbrary I have pp : Prime p := minFac_prime f1
1 have np : n s p :=
1 le_of_not_ge fun h =>
1 Formaltheorem have hy : p | n ! := dvd_factorial (minFac_pos _) h
1 have h: : p | 1 := (Nat.dvd_add_iff_right h:).2 (minFac_dvd _)
1 (and proof) pp.not_dvd_one h:
(p, np, pp)
\
~ '

Yang, K., Poesia, G., He, J., Li, W, Lauter, K. E., Chaudhuri, S., & Song, D.
(2025). Position: Formal Mathematical Reasoning—A New Frontier
in Al In Forty-second International Conference on Machine
Learning Position Paper Track.

——————— -

Code Language Models for FOMA+ MATH

> LeanDojo extracts data from Lean, enables interaction with the proof environment
programmatically, and uses an LM-based prover to augment with retrieval for
selecting premises from a vast math library.

Prove theorems

7 Proof tree n:N Local context X by Interaction
.
: Fgednn=n Goal

Tactic
cases n

ged00=0 k:N \
Fged (k+1) (k+1)=k+1 \
unfold ged \\‘
\
K:N
/
/

F ged((k+1) % (k+1)) (k+1)=k+1

Data LeanDojo Benchmark e
extraction| . Training r:.v-o, o
98,734 theorems and proofs r/\Y/\r
\ « 217,776 tactics "0“

XE o0
2X02%

* 129,243 premises

rewrite mod_self

k:N
FgedO(k+1)=k+1

model

apply ged_zero_left E BT S S RS SRR R S R SR G eSS RS SRS = R 9

/ i :'/ State ki

| Foged ((k+1)% (k+1) (k+1)=k+1
All accessible premises H

in the math library E i
H

'
Vo

theoren mod_self (n : nat) : n%n =0 —?—HM—’

theoren [ged_Zero 16%E| (x : mat) : ged 0 x = x [———+—{ Encoder >—|

N theorem mod_1t (x : nat) {y : mat} (h : 0<y) : x4y <y
i . Maximum theorem mod_self (n : nat) : n%n =0
i

rewrite mod_self \

Tactic

33K on average : cosine similarity theorem mod_eq of 1t {a b : nat} (h : a<b) :a%b=a
H theorem zero_mod (b : mat) : 0 % b =0
;o
/o
£ : - - . .
dof [EEH] : nat » nat = nat 5 -3 Encader Retrieved premises]

Yang, K., Swope, A, Gu, A., Chalamala, R, Song, P, Yu, S,, ... &
Anandkumar, A. (2023). Leandojo: Theorem proving with
retrieval-augmented language models. Advances in Neural
Information Processing Systems, 36, 21573-21612.

Code Language Models for FOMA+ MATH

> Verified Code Generation: jointly generating code, specifications, and proofs of
code-specification alighment

1 -- Description of the coding problem in natural language

2 -- Remove an element from a given array of integers at a specified index. The resulting array should

3 -- contain all the original elements except for the one at the given index. Elements before the

4 -- removed element remain unchanged, and elements after it are shifted one position to the left.

5

6 -- Code implementation

7 def removeElement (s : Array Int) (k : Nat) (h_precond : removeElement_pre s k) : Array Int :=

8 s.eraseldx! k

9

10 -- Pre-condition

11 def removeElement_pre (s : Array Int) (k : Nat) : Prop :=

12 k < s.size -- the indez must be smaller than the array size

13

14 -- Post-condition

15 def removeElement_post (s : Array Int) (k : Nat) (result: Array Int) (h_precond : removeElement_pre s k) : Prop :=
16 result.size = s.size - 1 A -- Only one element is removed

17 (V i, i < k — result[il! = s[il!) A -- The elements before indez k remain unchanged

18 (V i, i < result.size — i > k — result[il! = s[i + 1]!) -- The elements after index k are shifted by one position
19
20 -- Proof

21 theorem removeElement_spec (s: Array Int) (k: Nat) (h_precond : removeElement_pre s k)

22 removeElement_post s k (removeElement s k h_precond) h_precond := by sorry -- The proof is omitted for brevity
23

24 -- Test cases

25 (s : #[1, 2, 3, 4, 5]1) (k : 2) (result : #[1, 2, 4, 5]) -- Positive test with valid inputs and output

26 (s : #[1, 2, 3, 4, 5]) (k : B) -- Negative test: inputs violate the pre-condition at Line 12

27 (s : #[1, 2, 3, 4, 5]1) (k : 2) (result : #[1, 2, 4]) -- Negative test: output violates the post-condition at Line 16

28 (s : #[1, 2, 3, 4, 5]) (k : 2) (result : #[2, 2, 4, 5]) -- Negative test: output violates the post-condition at Line 17
29 (s : #[1, 2, 3, 4, 6]1) (k : 2) (result : #[1, 2, 4, 4]) -- Negative test: output violates the post-condition at Line 18

Ye, Z., Yan, Z., He,], Kasriel, T, Yang, K., & Song, D. (2025). VERINA:
Benchmarking Verifiable Code Generation. arXiv preprint
arXiv:2505.23135.

Code Language Models for &g\ A5

> LMs revolutionize electronic design automation with the code generation
capabilities.

i ! i i i 3
i -Lev : ; } ; s . \ |
“1‘ Sysl’;:aigl;e\ al RTL Design i Logic Synthesis 1 Floorplanning "=\ Place & Route
\ ‘ \ \ \ \ =
P O i i i i
Apphcatlons ,r’ Automated DSE " Spec-based RTL i Synthesis recipe Floorplan evaluation / Automated script
fi i luation | lorati / i § generation I
/ if { / { /
i / { { i /
i i i i i |

[Large Language Model]

i

I]
4 : J L. &
| [oe) Ul i
i Graj mage |
Data A B i ! A i Encoder |
e} { Encoder | b =8 LM (E r)
Modalities O Memermemeeed .
a LT
\ Texts Graphs Tmages /
/ “1 TR Behavioral i RTL “3 o \ San ‘ \
{ Specifications 1‘ 52w ! Dot \\ Netlists { Floorplans Layouts
Data i \ ‘Z’ =l E|
i !
Sources / E!E] =
B B 1 : e " @mm EB
__| cia

Pan,], Zhou, G, Chang, C. C,, Jacobson, L, Hu, J., & Chen, Y. (2025). A survey of
research in large language models for electronic design automation. ACM
Transactions on Design Automation of Electronic Systems, 30(3), 1-21.

Code Language Models for

RRDWARE

> LMs can help fabricate the chips, with a focus on hardware language (e.g., Verilog)
generation.

Given the finite state machine circuit described below, assume that the D

flip-flops are initially reset to zero before the machine begins.

Build this circuit in Verilog.

Input x goes to three different two-input gates: a

XOR, an AND, and a OR gate. Each of the three gates

is connected to the input of a D flip-flop and then
the flip-flop outputs all go to a three-input XNOR,

Fab whose output is Z. The second input of the XOR is its

corresponding flip-flop’s output, the second input of

the AND is its corresponding flip-flop’s complemented

output, and finally the second input of the OR is its

corresponding flip-flop’s complementary output.

LM $synthesis

design.\? J l
| B/
Prompt (—@Veriﬁcation

——

J

[|

Liu, M., Pinckney, N., Khailany, B, & Ren, H. (2023, October).
Chang, K., Wang, Y, Ren, H., Wang, M., Liang, S, Han, Y, ... & Li, X. Verilogeval: Evaluating large language models for verilog code
(2023). Chipgpt: How far are we from natural language hardware generation. I‘n 2023 IEEE/ACM International Conference on
design. arXiv preprint arXiv:2305.14019. Computer Aided Design (ICCAD) (pp. 1-8). IEEE.

Code Language Models for &g\ A5

> LMs can generate performant GPU Kernels, mimicking the Al engineer’s workflow.

Evaluate Correctness
Check over n_correct times

Given following model architecture, ﬁ (?e Language Model —
5 Check if
Randomized 2 match?

replace PyTorch operators to get a o
speedup ...by generating inline
embedded custom CUDA ... ?
I Inputs 9 ModelNew. X
> forward

O class Model(nn.Module): Custom Kernel O class ModelNew(nn.Module):

Measure Performance

[2y
def forward(self, x): C’&’ def forward(self, x): Benchmark over n_trial times
calls torch operators
calls torch operators - + custom cuda kernel custom cuda , eager mode torch.compile
Driver Code
ModelNew. Model. Model.
forward forward forward

Reference Torch Module Generated Torch + Compile Inline CUDA

Ouyang, A, Guo, S, Arora, S., Zhang, A. L., Hu, W, Ré, C., & Mirhoseini,
A. (2025). Kernelbench: Can llms write efficient gpu kernels?. arXiv
preprint arXiv:2502.10517.

Code Language Models for

> KernelBench is a collection of 250 PyTorch neural network operations that researchers
think systems should be able to automatically write optimized kernels for.

"
Level nroblems Description

1 20 Single PyTorch operations, eg CrossEntropyLoss

Sequences of 3-6 PyTorch operations, eg

2 80
Linear->MaxPool3d->RelLU

3 37 Whole architectures from 2010s, eg AlexNet,
GRU

5 14 Frontier of open source capabilities and

complexity in 2024

Ouyang, A, Guo, S, Arora, S., Zhang, A. L., Hu, W, Ré, C., & Mirhoseini,
A. (2025). Kernelbench: Can llms write efficient gpu kernels?. arXiv
preprint arXiv:2502.10517.

Realism

Realistic,
memorizable

Unrealistic, novel

Realistic,
memorizable

Realistic

Kernels per Expert Time

10+

10+

problem Estimate

15 min - 4 hours

30 min-10
hours

8-100+ hours

40-5004+ hours

Code Language Models for &g\ A5

> NVIDIA engineers created a new workflow that includes a special verifier along with the
DeepSeek-R1 model during inference in a closed-loop fashion for a predetermined duration.

Averaged Attention Kernel Speedup on Hopper GPU

Hopper GPUs
/2 1 2.1x
1
Modified Prompt 1 Refine and : 2
Qo
: Format Prompt : E 1.5x 1.6x 1.6x
I " g
! ! 2 1z X 1 1 1x 1x 1x 1x
: 1 1
Gpucode | s Criteria GPU
mital |) Deep R1 - Verifier Optimized
Prompt [Generate attention kerel : Kernels
[@s 0
. = 4 | Causal Mask DocumentMask Relative Alibi Bias Full Mask Softcap
Positional
m PyTorch API = NVIDIA Workflow
(Flex Attention) with DeepSeek-R1

https://developernvidia.com/blog/automating-gpu-kernel-gener
ation-with-deepseek-r1-and-inference-time-scaling/

2.0

Speedup Factor

Code Language Models for &g\ A5

METR researchers created “KernelAgent” to solve KernelBench tasks, achieving a
speedup of 1.81x. Model written kernels could fill the underserved n1che of

accelerating machine learning projects that

dollars of compute.

Average speedup on kernel optimization tasks, by model and elicitation method

2.01x
1.81
KernelAgent (ours) Best of K Models So Far A
7
1.38%_mm=
o=
Torch Wrapper Best of K
Leaderboard 4 g5,
1.Q1x 1.02x —0
[
40 sonnet ol 03-mini
2024-05-13 2024-10-22 2024-12-17 2025-01-31

Model Release Date

https://metr.org/blog/2025-02-14-mea
suring-automated-kernel-engineering/

Speedup Factor
=

Geometric Mean Speedup Factor

Average Best Speedup by Attempt Across Models

1.81x

KernelAgent o3-mini-high
KemelAgent o1

KernelAgent Claude 3.5 Sonnet
KernelAgent 40

Torch Wrapper Best of K
KernelBench Reported Results

XXvee®

50 100 150 200
Attempt Number

Geometric Mean of Best Speedup by Level

Level 1 Level 2 Level 3
Level

250 300

. KemelAgent (ours) using new models
KernelAgent o3-mini-high
= KemnelAgent o1
% KemelAgent Claude 3.5 Sonnet
KemelAgent 40
mm—Torch Wrapper Best of K

Level 5

Code Language Models for

"Fun" with computer security! For learning and hobbyists:

Forensics: Find a secret message in a filesystem

Tools: filesystem and network tools, grep, xd, etc.

Cryptography: Decrypt a message
Tools: SageMath, etc.

Binary exploitation (pwn): Exploit memory vulnerabilities

Tools: Debuggers, etc.

Reverse engineering: Compiling and disassembling binaries, identifying
vulnerabilities

Web: Injection attacks, cross-site scripting attacks

Code Language Models for [@iasaattainy: CTF

> InterCode-CTF (2023)

o 100 challenges from PicoCTF (high-school level) Easy
> NYU CTF Bench (2024)

o 200 challenges from CSAW CTF (university level)
> Cybench (2025) Hard

o 40 challenges from various CTF competitions (professional level)

Code Language Models for @iaeiaatnsay: Scaffolding

> EnIGMA interacts with the computer through an environment that is built on top of
SWE agent and extends it to cybersecurity.

EnIGMA &

EnIGMA - Components

@ SWE-Agent Computer Interfaces

LM-cybersecurity commands
@ Interactive Agent Tools (IATs)
@ Ghidra decompile & disassemble

LM-friendly commands
</ Navigate repo 0 Search files
= Usefileviewer g9 Editlines

)
2 Computer

Terminal
7t Debugger

E Challenge

Server

" ‘A Python libraries & Security Tools
@ Language Model
Summarizer for long-output
commands

¢ Connect

Welcome to FTP server

LM-friendly

environment feedback E= Fi lesystem

D ftp

| 1

Same Local Network Port

7\

Docker Docker
Task 2 Task 300+

—

Docker
Task 1

Laonguage
Model

— Setup

Abramovich, T, Udeshi, M., Shao, M., Lieret, K., Xi, H.,, Milner, K., ... & Press, 0. EnIGMA:
Interactive Tools Substantially Assist LM Agents in Finding Security Vulnerabilities.
In Forty-second International Conference on Machine Learning.

Code Language Models for @iaeiaatnsay: Scaffolding

> EnIGMA+ reduces evaluation time from days to hours with dynamic port allocation.

Dynamic Port Dynamic Port
Allocator *\\:\\ Allocator !
\ n
Docker _,/)\" Docker .’} Docker
Task 1 i Task 21 o Task ...
I
/' /11
Docker _-" 1 Docker .’ ' . Docker
Setup Task2 /) Task22 7 1 Tosk..
,I PR II "
/ /
T Docker .7 Docker)/ Docker
Task 20 Task 40 ~ Task ...
Loanguoge @ @ ~--—----- T S el :
Model | Batch1 | | Batch 2 | | Batch ... |

Zhuo, T. Y, Wang, D,, Ding, H,, Kumar, V,, & Wang, Z. (2025). Cyber-Zero: training
cybersecurity agents without runtime. arXiv preprint arXiv:2508.00910.

Code Language Models for [@iiasaaitsiay: CTF-Forge

> CTF-Forge can automatically build 600+ CTF environments in 2 mins instead of
weeks of expert configuration.

MCTF Archive Environment Generation CTF Challenge Runtime
Source System - DOCkerﬁle A cryptographic
Prompt Generates Dockerfile to build) f challenge
. Description.md t:e runtime and embed flags on | » involving Python
the server =
N “t and KeePass
% = *] \ databases.
pykeepass =
Language égggg Docker Compose lChaIIenge Ser\{er
PN) , + Welcome to server!
RehOSt) -"- Model GengratesaYAML file‘to Here is the challenge:
configure Docker services and
REHOSTING networks

Files can be found here: * & 1 *
[LINK]

Challenge JSON

Challenge Setup . . name description C bersecurit
o Heuristic files — E Agent y

This challenge has two files 2 Rules internal_port compose gen

which are ... flag category

Zhuo, T. Y, Wang, D, Ding, H,, Kumar, V,, & Wang, Z. (2025). Training
Language Model Agents to Find Vulnerabilities with CTF-Dojo. arXiv
preprint arXiv:2508.18370.

Code Language Models for [@iiasaattainy: CTF-Dojo

> CTF-Dojo is the first collection of runtime environments to train cybersecurity agents.

forensics
Benchmark | Level # Competition | # Crypto #Forensics #Pwn #Rev #Web #Misc | # Total i) r;vo&' 1
e

Training (8)

CTF-DoJo | Multi-Level 50 | 228 38 163 123 21 85 | 658
t
Evaluation c?{g 1‘;‘ :g;)
InterCode-CTF High School 1 16 13 2 27 2 31 91
NYU CTF Bench | University 1 53 15 38 51 19 24 192
Cybench Professional -4 16 -+ 2 6 8 4 40 misc
(36)

Zhuo, T. Y, Wang, D, Ding, H,, Kumar, V,, & Wang, Z. (2025). Training
Language Model Agents to Find Vulnerabilities with CTF-Dojo. arXiv
preprint arXiv:2508.18370.

Code Language Models for [@iiasaattsiay: Road Ahead

> Language model agents get better on CTF.

Cybench Results

dddddddddddddddd

uuuuuuuuuuu

eeeeeeeeeeeeee

https://red.anthropic.com/2025/ai-for-cyber-defenders/

Code Language Models for [@iiasaattsiay: Road Ahead

> Language model agents get better and better on CTE.

> Researchers recently have been applying language model agents to find
vulnerabilities in the real-world software, but with limited scale.

&3 Cyber Press
Google’s Big Sleep Al Detects and Halts Active Exploitation
of SQLite 0-Day Vulnerability

Google has announced significant advancements in artificial intelligence-driven
cybersecurity solutions, positioning Al as a game-changing...

Jul 16, 2025

Code Language Models for [@iiasaattsiay: Road Ahead

> Language model agents get better and better on CTE.

> Researchers recently have been applying language model agents to find
vulnerabilities in the real-world software, but with limited scale.

N
(5 Cyber Press

Go

of | Eb The Economic Times

Goo Al tool Xbow is one of America's best hackers

cybe Al-powered cybersecurity tool Xbow has topped HackerOne's US leaderboard, marking
Jul 1 the first time an Al, not a human, leads in reported software vulnerabilities.

Code Language Models for [@iiasaattsiay: Road Ahead

> Language model agents get better and better on CTE.

> Researchers recently have been applying language model agents to find
vulnerabilities in the real-world software, but with limited scale.

N
(5 Cyber Press

Go

of | Eb The Economic Times

Goo Al
cybe Al-p Google DeepMind

Jul 1 the 1 Introducing CodeMender: an Al agent for code security

Jun codeMender is a new Al-powered agent that improves code security automatically. It
instantly patches new software vulnerabilities,...

19 hours ago

Small @2 Agentic Models for Code

@ Qwen/Qwen3-Coder-30B-A° X +

c 25 huggingface.co/Qwen/Qwen3-Coder-30B-A3B-Instruct

¥ Hugging Face : : Models Datasets Spaces Community Docs Pricing = (@)
% (Qwen3-Coder-30B-A3B-Instruct © O like Following % Qwen
7 Text # Transformer =3 qwen3_moe conversational 2505.09388 & apache-2.0
Model card Files and versions ~ xet Community Settings i S Tainv < Deploy~

2. Edit model card

Qwen3-Coder-30B-A3B-Instruct Bi‘f;:;.o,ids fastmonth \,‘/"_,\/\/\,\

View full history
~* Qwen Chat

£ Safetensors

Highlights
Modelsize 31Bparams Tensortype BF16 & Chattemplate
Qwen3-Coder is available in multiple sizes. Today, we're excited to introduce Qwen3- 7 Filesinfo
Coder-30B-A3B-Instruct. This streamlined model maintains impressive performance
and efficiency, featuring the following key enhancements: Inference Providers wew ® N NebiusAl 2
[Text Generation Examples v

Significant Performance among open models on Agentic Coding, Agentic
Browser-Use, and other foundational coding tasks.

Long-context Capabilities with native support for 256K tokens, extendable up to
1M tokens using Yarn, optimized for repository-scale understanding.

Agentic Coding supporting for most platform such as Qwen Code, CLINE,

featuring a specially designed function call format.

https://huggingface.co/Qwen/Qwen3-Coder-30B-A3B-Instruct

https://huggingface.co/Menlo/Jan-nano

Small @2 Agentic Models for Code

MenlojJan-nano - Hugging F= - X +

huggingface.co/Menlo/Jan-nano

~ Hugging Face

Models

Jan-Nano: An Agentic Model

Note: Jan-Nano is a non-thinking model.

Authors: Alan Dao, Bach Vu Dinh

("] Jan-nano 0 @ like Follow @ Menlo Research
? Text ¥ qwen3 @ text ti f
Model card Files and versions < xet Community

2 Edit model card

Datasets Spaces

250622760 &

Q Train v

Downloads last month
1,954

£ Safetensors

Modelsize 4B params Tensor type

7 Filesinfo

Inference Providers wew

[Text Generation

Community Docs

pricing = ()

= apache-2.0

BF16 ¢ Chat template

© @ FeatherlessAl

Examples v

Send

