
8. Frontier Topics

The Frontier of Code Intelligence

What is the ultimate goal of Code Intelligence?

Write correct code for software? Not really…

Code is the tool & interface that connects to the real world.

Think Beyond Writing Code.

Code Language Models for FӨMΛᄂ MΛƬΉ

➢ Formal languages like Lean can be used to write not only conventional
programs but also mathematical definitions, theorems, and proof.

De Moura, L., Kong, S., Avigad, J., Van Doorn, F., & von Raumer, J.
(2015, July). The Lean theorem prover (system description). In
International Conference on Automated Deduction (pp. 378-388).
Cham: Springer International Publishing.

Code Language Models for FӨMΛᄂ MΛƬΉ

➢ Code LMs can help automating proofs.

Given informal mathematics, autoformalization automatically translates it into formal
theorems and proofs, and then theorem proving generates formal proofs.

Yang, K., Poesia, G., He, J., Li, W., Lauter, K. E., Chaudhuri, S., & Song, D.
(2025). Position: Formal Mathematical Reasoning—A New Frontier
in AI. In Forty-second International Conference on Machine
Learning Position Paper Track.

Code Language Models for FӨMΛᄂ MΛƬΉ

➢ LeanDojo extracts data from Lean, enables interaction with the proof environment
programmatically, and uses an LM-based prover to augment with retrieval for
selecting premises from a vast math library.

Yang, K., Swope, A., Gu, A., Chalamala, R., Song, P., Yu, S., ... &
Anandkumar, A. (2023). Leandojo: Theorem proving with
retrieval-augmented language models. Advances in Neural
Information Processing Systems, 36, 21573-21612.

Code Language Models for FӨMΛᄂ MΛƬΉ

➢ Verified Code Generation: jointly generating code, specifications, and proofs of
code-specification alignment

Ye, Z., Yan, Z., He, J., Kasriel, T., Yang, K., & Song, D. (2025). VERINA:
Benchmarking Verifiable Code Generation. arXiv preprint
arXiv:2505.23135.

Code Language Models for

➢ LMs revolutionize electronic design automation with the code generation
capabilities.

Pan, J., Zhou, G., Chang, C. C., Jacobson, I., Hu, J., & Chen, Y. (2025). A survey of
research in large language models for electronic design automation. ACM
Transactions on Design Automation of Electronic Systems, 30(3), 1-21.

Code Language Models for

➢ LMs can help fabricate the chips, with a focus on hardware language (e.g., Verilog)
generation.

Chang, K., Wang, Y., Ren, H., Wang, M., Liang, S., Han, Y., ... & Li, X.
(2023). Chipgpt: How far are we from natural language hardware
design. arXiv preprint arXiv:2305.14019.

Liu, M., Pinckney, N., Khailany, B., & Ren, H. (2023, October).
Verilogeval: Evaluating large language models for verilog code
generation. In 2023 IEEE/ACM International Conference on
Computer Aided Design (ICCAD) (pp. 1-8). IEEE.

Code Language Models for

➢ LMs can generate performant GPU Kernels, mimicking the AI engineer’s workflow.

Ouyang, A., Guo, S., Arora, S., Zhang, A. L., Hu, W., Ré, C., & Mirhoseini,
A. (2025). Kernelbench: Can llms write efficient gpu kernels?. arXiv
preprint arXiv:2502.10517.

Code Language Models for

➢ KernelBench is a collection of 250 PyTorch neural network operations that researchers
think systems should be able to automatically write optimized kernels for.

Ouyang, A., Guo, S., Arora, S., Zhang, A. L., Hu, W., Ré, C., & Mirhoseini,
A. (2025). Kernelbench: Can llms write efficient gpu kernels?. arXiv
preprint arXiv:2502.10517.

Code Language Models for

➢ NVIDIA engineers created a new workflow that includes a special verifier along with the
DeepSeek-R1 model during inference in a closed-loop fashion for a predetermined duration.

https://developer.nvidia.com/blog/automating-gpu-kernel-gener
ation-with-deepseek-r1-and-inference-time-scaling/

Code Language Models for

➢ METR researchers created “KernelAgent” to solve KernelBench tasks, achieving a
speedup of 1.81x. Model written kernels could fill the underserved niche of
accelerating machine learning projects that use only hundreds of
dollars of compute.

https://metr.org/blog/2025-02-14-mea
suring-automated-kernel-engineering/

Code Language Models for Cybersecurity

"Fun" with computer security! For learning and hobbyists:

Forensics: Find a secret message in a filesystem
Tools: filesystem and network tools, grep, xd, etc.

Cryptography: Decrypt a message
Tools: SageMath, etc.

Binary exploitation (pwn): Exploit memory vulnerabilities
Tools: Debuggers, etc.

Reverse engineering: Compiling and disassembling binaries, identifying
vulnerabilities

Web: Injection attacks, cross-site scripting attacks

Code Language Models for Cybersecurity: CTF

➢ InterCode-CTF (2023)
○ 100 challenges from PicoCTF (high-school level)

➢ NYU CTF Bench (2024)
○ 200 challenges from CSAW CTF (university level)

➢ Cybench (2025)
○ 40 challenges from various CTF competitions (professional level)

Easy

Hard

Code Language Models for Cybersecurity: Scaffolding

➢ EnIGMA interacts with the computer through an environment that is built on top of
SWE agent and extends it to cybersecurity.

Language
Model Setup Docker

Task 1
Docker
Task 2 … Docker

Task 300+

Same Local Network Port

Abramovich, T., Udeshi, M., Shao, M., Lieret, K., Xi, H., Milner, K., ... & Press, O. EnIGMA:
Interactive Tools Substantially Assist LM Agents in Finding Security Vulnerabilities.
In Forty-second International Conference on Machine Learning.

Code Language Models for Cybersecurity: Scaffolding

➢ EnIGMA+ reduces evaluation time from days to hours with dynamic port allocation.

Language
Model

Setup

Docker
Task 1

…

Docker
Task 2

Docker
Task 20

Docker
Task 21

…

Docker
Task 22

Docker
Task 40

Dynamic Port
Allocator

Batch 1 Batch 2

…

Docker
Task …

…

Docker
Task …

Docker
Task …

Batch …

Dynamic Port
Allocator

Zhuo, T. Y., Wang, D., Ding, H., Kumar, V., & Wang, Z. (2025). Cyber-Zero: training
cybersecurity agents without runtime. arXiv preprint arXiv:2508.00910.

Code Language Models for Cybersecurity: CTF-Forge

➢ CTF-Forge can automatically build 600+ CTF environments in 2 mins instead of
weeks of expert configuration.

Zhuo, T. Y., Wang, D., Ding, H., Kumar, V., & Wang, Z. (2025). Training
Language Model Agents to Find Vulnerabilities with CTF-Dojo. arXiv
preprint arXiv:2508.18370.

Source
Description.md

task

pykeepass

Rehost
REHOSTING

Files can be found here:
[LINK]

Challenge Setup

This challenge has two files
which are …

CTF Archive Environment Generation

Dockerfile
Generates Dockerfile to build
the runtime and embed flags on
the server

Docker Compose
Generates a YAML file to
configure Docker services and
networks

Challenge JSON
name description
files box
internal_port compose
flag category

Language
Model

Challenge Server
Welcome to server!
Here is the challenge:
...

A cryptographic
challenge
involving Python
and KeePass
databases.

CTF Challenge Runtime

System
Prompt

Heuristic
Rules

Cybersecurity
Agent

➢ CTF-Dojo is the first collection of runtime environments to train cybersecurity agents.

Code Language Models for Cybersecurity: CTF-Dojo

Zhuo, T. Y., Wang, D., Ding, H., Kumar, V., & Wang, Z. (2025). Training
Language Model Agents to Find Vulnerabilities with CTF-Dojo. arXiv
preprint arXiv:2508.18370.

➢ Language model agents get better on CTF.

Code Language Models for Cybersecurity: Road Ahead

https://red.anthropic.com/2025/ai-for-cyber-defenders/

➢ Language model agents get better and better on CTF.

➢ Researchers recently have been applying language model agents to find
vulnerabilities in the real-world software, but with limited scale.

Code Language Models for Cybersecurity: Road Ahead

Code Language Models for Cybersecurity: Road Ahead

➢ Language model agents get better and better on CTF.

➢ Researchers recently have been applying language model agents to find
vulnerabilities in the real-world software, but with limited scale.

Code Language Models for Cybersecurity: Road Ahead

➢ Language model agents get better and better on CTF.

➢ Researchers recently have been applying language model agents to find
vulnerabilities in the real-world software, but with limited scale.

Small 🥺 Agentic Models for Code

https://huggingface.co/Qwen/Qwen3-Coder-30B-A3B-Instruct

Small 🥺 Agentic Models for Code

https://huggingface.co/Menlo/Jan-nano

