8. Frontier Topics



The Frontier of Code Intelligence

What is the ultimate goal of Code Intelligence?
Write correct code for software? Not really...
Code is the tool & interface that connects to the real world.

Think Beyond Writing Code.



Code Language Models for FOMA+ MATH

> Formal languages like Lean can be used to write not only conventional

programs but also mathematical definitions, theorems, and proof.
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Lean file

—

inductive Nat where
| zero : Nat

| succ : Nat - Nat

def add (m n : Nat) :

match n with
| .zero =>m

| .succ n' => .succ (add m n')

theorem add_zero (n :

induction n with
| zero => rfl

| succ n ih => simp [add, ih]

: add .zero n =n := by
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Code Language Models for FOMA+ MATH

> Code LMs can help automating proofs.

Given informal mathematics, autoformalization automatically translates it into formal
theorems and proofs, and then theorem proving generates formal proofs.

N
Theorem 1. There exists an infinite number of primes.
I
Proof. Let n be an arbitrary positive integer, and let |
p € Z* be a prime factor of n!+1. We can derive p > n |
by noting that n! + 1 cannot be divided by positive
el = integers from 2 to n. Since n is arbitrary, we have !
/ \ proved that the number of primes is infinite. ol
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theorem exists_infinite_primes (n : N) : 3 p, ns p A Prime p :=
| I ' let p := minFac (n ! + 1)
Informal \ / Formal 1 have f1 : n ! + 1 # 1 := ne_of_gt <| succ_lt_succ <| factorial_pos _
math N - - o~ math llbrary I have pp : Prime p := minFac_prime f1
1 have np : n s p :=
1 le_of_not_ge fun h =>
1 Formaltheorem have hy : p | n ! := dvd_factorial (minFac_pos _) h
1 have h: : p | 1 := (Nat.dvd_add_iff_right h:).2 (minFac_dvd _)
1 (and proof) pp.not_dvd_one h:
(p, np, pp)
\
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Yang, K., Poesia, G., He, J., Li, W, Lauter, K. E., Chaudhuri, S., & Song, D.
(2025). Position: Formal Mathematical Reasoning—A New Frontier
in Al In Forty-second International Conference on Machine
Learning Position Paper Track.
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Code Language Models for FOMA+ MATH

> LeanDojo extracts data from Lean, enables interaction with the proof environment
programmatically, and uses an LM-based prover to augment with retrieval for
selecting premises from a vast math library.
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Code Language Models for FOMA+ MATH

> Verified Code Generation: jointly generating code, specifications, and proofs of
code-specification alighment

1 -- Description of the coding problem in natural language

2 -- Remove an element from a given array of integers at a specified index. The resulting array should

3 -- contain all the original elements except for the one at the given index. Elements before the

4 -- removed element remain unchanged, and elements after it are shifted one position to the left.

5

6 -- Code implementation

7  def removeElement (s : Array Int) (k : Nat) (h_precond : removeElement_pre s k) : Array Int :=

8 s.eraseldx! k

9

10 -- Pre-condition

11 def removeElement_pre (s : Array Int) (k : Nat) : Prop :=

12 k < s.size -- the indez must be smaller than the array size

13

14 -- Post-condition

15  def removeElement_post (s : Array Int) (k : Nat) (result: Array Int) (h_precond : removeElement_pre s k) : Prop :=
16 result.size = s.size - 1 A -- Only one element is removed

17 (V i, i < k — result[il! = s[il!) A -- The elements before indez k remain unchanged

18 (V i, i < result.size — i > k — result[il! = s[i + 1]!) -- The elements after index k are shifted by one position
19
20 -- Proof

21  theorem removeElement_spec (s: Array Int) (k: Nat) (h_precond : removeElement_pre s k)

22 removeElement_post s k (removeElement s k h_precond) h_precond := by sorry -- The proof is omitted for brevity
23

24 -- Test cases

25 (s : #[1, 2, 3, 4, 5]1) (k : 2) (result : #[1, 2, 4, 5]) -- Positive test with valid inputs and output

26 (s : #[1, 2, 3, 4, 5]) (k : B) -- Negative test: inputs violate the pre-condition at Line 12

27 (s : #[1, 2, 3, 4, 5]1) (k : 2) (result : #[1, 2, 4]) -- Negative test: output violates the post-condition at Line 16

28 (s : #[1, 2, 3, 4, 5]) (k : 2) (result : #[2, 2, 4, 5]) -- Negative test: output violates the post-condition at Line 17
29 (s : #[1, 2, 3, 4, 6]1) (k : 2) (result : #[1, 2, 4, 4]) -- Negative test: output violates the post-condition at Line 18

Ye, Z., Yan, Z., He, ], Kasriel, T, Yang, K., & Song, D. (2025). VERINA:
Benchmarking Verifiable Code Generation. arXiv preprint
arXiv:2505.23135.



Code Language Models for &g\ A5

> LMs revolutionize electronic design automation with the code generation
capabilities.
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Pan, ], Zhou, G, Chang, C. C,, Jacobson, L, Hu, J., & Chen, Y. (2025). A survey of
research in large language models for electronic design automation. ACM
Transactions on Design Automation of Electronic Systems, 30(3), 1-21.



Code Language Models for

RRDWARE

> LMs can help fabricate the chips, with a focus on hardware language (e.g., Verilog)
generation.

Given the finite state machine circuit described below, assume that the D

flip-flops are initially reset to zero before the machine begins.

Build this circuit in Verilog.

Input x goes to three different two-input gates: a

XOR, an AND, and a OR gate. Each of the three gates

is connected to the input of a D flip-flop and then
the flip-flop outputs all go to a three-input XNOR,

Fab whose output is Z. The second input of the XOR is its

corresponding flip-flop’s output, the second input of

the AND is its corresponding flip-flop’s complemented

output, and finally the second input of the OR is its

corresponding flip-flop’s complementary output.

LM  $synthesis

design.\? J l
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Prompt (—@Veriﬁcation
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Liu, M., Pinckney, N., Khailany, B, & Ren, H. (2023, October).
Chang, K., Wang, Y, Ren, H., Wang, M., Liang, S, Han, Y, ... & Li, X. Verilogeval: Evaluating large language models for verilog code
(2023). Chipgpt: How far are we from natural language hardware generation. I‘n 2023 IEEE/ACM International Conference on
design. arXiv preprint arXiv:2305.14019. Computer Aided Design (ICCAD) (pp. 1-8). IEEE.



Code Language Models for &g\ A5

> LMs can generate performant GPU Kernels, mimicking the Al engineer’s workflow.

Evaluate Correctness
Check over n_correct times

Given following model architecture, ﬁ ( ?e Language Model —
5 Check if
Randomized 2 match?

replace PyTorch operators to get a o
speedup ...by generating inline
embedded custom CUDA ... ?
I Inputs 9 ModelNew. X
> forward

O class Model(nn.Module): Custom Kernel O class ModelNew(nn.Module):

Measure Performance

[ 2y
def forward(self, x): C’&’ def forward(self, x): Benchmark over n_trial times
calls torch operators
calls torch operators - + custom cuda kernel custom cuda , eager mode torch.compile
Driver Code
ModelNew. Model. Model.
forward forward forward

Reference Torch Module Generated Torch + Compile Inline CUDA

Ouyang, A, Guo, S, Arora, S., Zhang, A. L., Hu, W, Ré, C., & Mirhoseini,
A. (2025). Kernelbench: Can llms write efficient gpu kernels?. arXiv
preprint arXiv:2502.10517.



Code Language Models for

> KernelBench is a collection of 250 PyTorch neural network operations that researchers
think systems should be able to automatically write optimized kernels for.

# "
Level nroblems Description

1 20 Single PyTorch operations, eg CrossEntropyLoss

Sequences of 3-6 PyTorch operations, eg

2 80
Linear->MaxPool3d->RelLU

3 37 Whole architectures from 2010s, eg AlexNet,
GRU

5 14 Frontier of open source capabilities and

complexity in 2024

Ouyang, A, Guo, S, Arora, S., Zhang, A. L., Hu, W, Ré, C., & Mirhoseini,
A. (2025). Kernelbench: Can llms write efficient gpu kernels?. arXiv
preprint arXiv:2502.10517.
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Code Language Models for &g\ A5

> NVIDIA engineers created a new workflow that includes a special verifier along with the
DeepSeek-R1 model during inference in a closed-loop fashion for a predetermined duration.

Averaged Attention Kernel Speedup on Hopper GPU

Hopper GPUs
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https://developernvidia.com/blog/automating-gpu-kernel-gener
ation-with-deepseek-r1-and-inference-time-scaling/



2.0

Speedup Factor

Code Language Models for &g\ A5

METR researchers created “KernelAgent” to solve KernelBench tasks, achieving a
speedup of 1.81x. Model written kernels could fill the underserved n1che of

accelerating machine learning projects that

dollars of compute.

Average speedup on kernel optimization tasks, by model and elicitation method

2.01x
1.81
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7
1.38%_mm=
o=
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1.Q1x 1.02x —0
[
40 sonnet ol 03-mini
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Model Release Date

https://metr.org/blog/2025-02-14-mea
suring-automated-kernel-engineering/
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Code Language Models for

"Fun" with computer security! For learning and hobbyists:

Forensics: Find a secret message in a filesystem

Tools: filesystem and network tools, grep, xd, etc.

Cryptography: Decrypt a message
Tools: SageMath, etc.

Binary exploitation (pwn): Exploit memory vulnerabilities

Tools: Debuggers, etc.

Reverse engineering: Compiling and disassembling binaries, identifying
vulnerabilities

Web: Injection attacks, cross-site scripting attacks



Code Language Models for [@iasaattainy: CTF

> InterCode-CTF (2023)

o 100 challenges from PicoCTF (high-school level) Easy
> NYU CTF Bench (2024)

o 200 challenges from CSAW CTF (university level)
> Cybench (2025) Hard

o 40 challenges from various CTF competitions (professional level)



Code Language Models for @iaeiaatnsay: Scaffolding

> EnIGMA interacts with the computer through an environment that is built on top of
SWE agent and extends it to cybersecurity.

EnIGMA &

EnIGMA - Components
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Abramovich, T, Udeshi, M., Shao, M., Lieret, K., Xi, H.,, Milner, K., ... & Press, 0. EnIGMA:
Interactive Tools Substantially Assist LM Agents in Finding Security Vulnerabilities.
In Forty-second International Conference on Machine Learning.



Code Language Models for @iaeiaatnsay: Scaffolding

> EnIGMA+ reduces evaluation time from days to hours with dynamic port allocation.

Dynamic Port Dynamic Port
Allocator *\\:\\ Allocator !
\ n
Docker _,/)\" Docker .’} Docker
Task 1 i Task 21 o Task ...
I
/' /11
Docker _-" 1 Docker .’ ' . Docker
Setup  Task2 /) Task22 7 1 Tosk..
,I PR II "
/ /
T Docker .7 Docker )/ Docker
Task 20 Task 40 ~ Task ...
Loanguoge @ @ ~--—----- T S el :
Model | Batch1 | | Batch 2 | | Batch ... |

Zhuo, T. Y, Wang, D,, Ding, H,, Kumar, V,, & Wang, Z. (2025). Cyber-Zero: training
cybersecurity agents without runtime. arXiv preprint arXiv:2508.00910.



Code Language Models for [@iiasaaitsiay: CTF-Forge

> CTF-Forge can automatically build 600+ CTF environments in 2 mins instead of
weeks of expert configuration.

MCTF Archive Environment Generation CTF Challenge Runtime
Source System - DOCkerﬁle A cryptographic
Prompt Generates Dockerfile to build ) f challenge
. Description.md t:e runtime and embed flags on | » involving Python
the server =
N “t and KeePass
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Language égggg Docker Compose lChaIIenge Ser\{er
PN ) , + Welcome to server!
RehOSt ) -"- Model GengratesaYAML file‘to Here is the challenge:
configure Docker services and
REHOSTING networks

Files can be found here: * & 1 *
[LINK]

Challenge JSON

Challenge Setup . . name description C bersecurit
o Heuristic files — E Agent y

This challenge has two files 2 Rules internal_port compose gen

which are ... flag category

Zhuo, T. Y, Wang, D, Ding, H,, Kumar, V,, & Wang, Z. (2025). Training
Language Model Agents to Find Vulnerabilities with CTF-Dojo. arXiv
preprint arXiv:2508.18370.



Code Language Models for [@iiasaattainy: CTF-Dojo

> CTF-Dojo is the first collection of runtime environments to train cybersecurity agents.

forensics
Benchmark | Level # Competition | # Crypto #Forensics #Pwn #Rev #Web #Misc | # Total i) r;vo&' 1
e

Training (8)

CTF-DoJo | Multi-Level 50 | 228 38 163 123 21 85 | 658
t
Evaluation c?{g 1‘;‘ :g;)
InterCode-CTF High School 1 16 13 2 27 2 31 91
NYU CTF Bench | University 1 53 15 38 51 19 24 192
Cybench Professional -4 16 -+ 2 6 8 4 40 misc
(36)

Zhuo, T. Y, Wang, D, Ding, H,, Kumar, V,, & Wang, Z. (2025). Training
Language Model Agents to Find Vulnerabilities with CTF-Dojo. arXiv
preprint arXiv:2508.18370.



Code Language Models for [@iiasaattsiay: Road Ahead

> Language model agents get better on CTF.

Cybench Results
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https://red.anthropic.com/2025/ai-for-cyber-defenders/



Code Language Models for [@iiasaattsiay: Road Ahead

> Language model agents get better and better on CTE.

> Researchers recently have been applying language model agents to find
vulnerabilities in the real-world software, but with limited scale.

&3 Cyber Press
Google’s Big Sleep Al Detects and Halts Active Exploitation
of SQLite 0-Day Vulnerability

Google has announced significant advancements in artificial intelligence-driven
cybersecurity solutions, positioning Al as a game-changing...

Jul 16, 2025



Code Language Models for [@iiasaattsiay: Road Ahead

> Language model agents get better and better on CTE.

> Researchers recently have been applying language model agents to find
vulnerabilities in the real-world software, but with limited scale.

N
(5 Cyber Press

Go

of | Eb The Economic Times

Goo Al tool Xbow is one of America's best hackers

cybe Al-powered cybersecurity tool Xbow has topped HackerOne's US leaderboard, marking
Jul 1 the first time an Al, not a human, leads in reported software vulnerabilities.




Code Language Models for [@iiasaattsiay: Road Ahead

> Language model agents get better and better on CTE.

> Researchers recently have been applying language model agents to find
vulnerabilities in the real-world software, but with limited scale.

N
(5 Cyber Press

Go

of | Eb The Economic Times

Goo Al
cybe Al-p Google DeepMind

Jul 1 the 1 Introducing CodeMender: an Al agent for code security

Jun codeMender is a new Al-powered agent that improves code security automatically. It
instantly patches new software vulnerabilities,...

19 hours ago




Small @2 Agentic Models for Code
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Small @2 Agentic Models for Code
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